Multivariate best proximity point theorems in metric spaces
نویسندگان
چکیده
The purpose of this paper is to prove an existence and uniqueness theorems of the multivariate best proximity point in the complete metric spaces. The concept of multivariate best proximity point is firstly introduced in this article. These new results improve and extend the previously known ones in the literature. c ©2016 All rights reserved.
منابع مشابه
Non-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملBest proximity point theorems in 1/2−modular metric spaces
In this paper, first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points. Finally, as consequences of these theorems, we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces. We present an ex...
متن کاملExistence of best proximity and fixed points in $G_p$-metric spaces
In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spa...
متن کاملBest proximity point theorems in Hadamard spaces using relatively asymptotic center
In this article we survey the existence of best proximity points for a class of non-self mappings which satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [A. Abkar, M. Gabeleh, Best proximity points of non-self mappings, Top, 21, (2013), 287-295] which guarantees the existence of best proximity points for nonex...
متن کاملNew best proximity point results in G-metric space
Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...
متن کامل